Invited Reviews

SRPK1 inhibition in vivo: modulation of VEGF splicing and potential treatment for multiple diseases

Biochem. Soc. Trans. 40, 831-835 (2012)
 - PMID/doi: 22817743
Authors: Oltean S, Gammons M, Hulse R, Hamdollah-Zadeh M, Mavrou A, Donaldson L, Salmon AH, Harper SJ, Ladomery MR, Bates DO

Abstract

SRPK1 (serine-arginine protein kinase 1) is a protein kinase that specifically phosphorylates proteins containing serine-arginine-rich domains. Its substrates include a family of SR proteins that are key regulators of mRNA AS (alternative splicing). VEGF (vascular endothelial growth factor), a principal angiogenesis factor contains an alternative 3’ splice site in the terminal exon that defines a family of isoforms with a different amino acid sequence at the C-terminal end, resulting in anti-angiogenic activity in the context of VEGF165-driven neovascularization. It has been shown recently in our laboratories that SRPK1 regulates the choice of this splice site through phosphorylation of the splicing factor SRSF1 (serine/arginine-rich splicing factor 1). The present review summarizes progress that has been made to understand how SRPK1 inhibition may be used to manipulate the balance of pro- and anti-angiogenic VEGF isoforms in animal models in vivo and therefore control abnormal angiogenesis and other pathophysiological processes in multiple disease states.

Swrc